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Pseudoreflection from interface between two oscillatory media: Extended driver
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The dynamics of a reaction-diffusion medium composed of two uniform self-oscillating regions is consid-
ered. We analyze the phenomenon of pseudoreflection of waves at the region’s interface. The reflected waves
show an unusual change of wavelength, amplitude, and period. In contrast to our previous results, here this
behavior can be perceived as an action of a spatially extended higher-frequency “driver.” Observed also are the
interesting phenomena of the appearance of narrow transient zones near the interface and of diffusion-induced
bifurcations. Furthermore, the pseudoreflection is shown to be a possible mechanism of spiral and “target”
waves generation. The relevance of the obtained results to the dynamics of the cardiac sinus node is discussed.
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[. INTRODUCTION lators whose properties correspond to the two adjacent, uni-
form LC regions, and an even simpler model where external
Limit cycle (LC) media which are similar to a continuum perturbations are periodically applied to a single oscillator
of coupled nonlinear oscillators are widespread in physicalcorresponding to the low-frequency region. The simulation
chemical, and biological systerh$—8]. Most of them(e.g.,  results allow us to explain the most important features of the
the sinus node in the heart, or the small intestinee  SpPatially extended driver.
strongly nonuniform LC media of nonidentical oscillators In addition, the pseudoreflection in two-dimensional
with different natural frequencies. As a suitable model forspace is also briefly considered. The absence of the usual
such oscillators and nonuniformities we use a LC mediunfeflection law for the PRW and the generation of spiral
composed of two uniform, spatially adjacent regions withwaves are observed. Possible applications are also discussed.
different frequencies. Despite its simplicity this model allows
us to simulate many interesting phenomena such as the ap- II. PRW IN A DUAL ONE-DIMENSIONAL
pearance of propagating waves and theseudoreflection SELF-OSCILLATING MEDIUM
from the interface between regions. Along with the usual
reversal of propagation direction, these pseudoreflected We investigate the propagation of waves in a one-
Waves(PRVV) exhibit theunusualphenomena of a decrease dimensiona(lD) reaction-diffusion LC medium which is di-
in the wavelength, the amplitude, and the period of oscillavided into two uniform space regions at a selected interface
tions. These features, especially the decrease in period, indfint Xo. For this purpose we solve the FitzHugh-Nagumo
cate the existence of higher-frequency sources of the PRWFHN) equationg11]:
The PRW phenomenon has previously been obse@gdd)

for a uniform LC medium of limited size, with various v v
boundary conditions. In both these works, the soudciver) ot D w2 v(r—a)(1-»)-w,

is autonomougself-generatedand appears inside the LC
region, close to the boundary, as a result of the interaction W
between diffusion and the boundary condition. The PRW are —=g(v—dw) (1)
generated via frequency locking of coupled oscillators. ot

A more complicated case of PRW generation is examined
in this work. In contrast to our pervious studies, thtire  where e=¢, if X<Xg, and e=g; if x>Xq. We sete,
high frequency region must now be considered as an “exter=>¢,. Here v(x,t) stands for aractivator, embodying, e.g.,
nal” spatially extended driver of PRW driven into the low the action potentialin the sinus node of the heart while
frequency region. The properties of the high frequency rew(x,t) is aninhibitor, or arefractorinessfunction. D is the
gion can now be modified “externally” by varying its size diffusion coefficienta is the excitability parameter, andis
and natural frequency, thus inducing profound changes in tha (usually small parameter measuring the ratio between the
driven PRW, such a&) different entrainment frequency ra- time constants of the activator and the inhibitdris a pa-
tios between the PRW and the driver, dbiithe appearance rameter. The timéis measured in units of the activator time
of a complex transient zone around the region interface. Iconstant. Neumann boundary conditions are imposed at both
addition, the high frequency region displays intricate dynam-ends of the integration domain. The natural frequency of a
ics. FHN oscillatory medium is directly related to the magnitude

In order to gain a better understanding of the complexof its : in the range of small values ef the larger is, the
dynamics of the model, simplified versions thereof, includinghigher will be the frequency. The two regions of space are
different external local drivers, were also investigated. Thusnterchangeably specified by theirvalue, or by their fre-
we have analyzed a model of two unidirected coupled oscilguency magnitude.
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FIG. 1. A stroboscopic picture of propagating and pseu- —
doreflected wavePRW) in a LC medium with piecewice constant | 1101 130 1
nonuniformity Ae=¢,—e,=0.0076; the time difference between
strobes is 228 time unitsFirstly, only regular waves are visible % . ‘ X 90 -
propagating in the low-frequency region away frots x; =800, 0 0.02 0.04 0.06 50
where a localized initial pulse was launched. Then the left As 0 002 004 006
propagating waves reach the high frequency region which starts f £

generate opposite moving PRW. These are annihilated by collisions
with the regular waves. However, the frequency of the PRW being FIG. 2. (a) The periodT of the pseudoreflected waves as a

higher, the point of annihilation gradually shifts towards the rightfunction of Az (the difference between values in the two uniform

edge of the low-frequency region, and after a long time, only PRW__ . . .
regions. is kept constant at 0.00%b) the amplitudeA and(c
are observed. Meanwhile in the left region, the local “source” of gions. &, P %) P ©

. ; the periodT of a single oscillator as functions of the parameter
the refractive waves slowly moves away from the interface, and %orrespondingly(ﬂ:B D=1)

monotonic increase of their wavelength is visible.

maximum amplitude in advance of its nearest neighbors. A

Let us recall(see, e.g.[12]) thata may be either positive diffusion current is therefore created in both directions. This
or negative; ife<<1 (the relaxation oscillatof13]), andais  immediate vicinity starts operating as a high frequency ex-
negative below a certain threshold value, the system will beernal driver for the right hand side region. In due course,
in a limit-cycle regime, whereby pulses are autonomouslythrough the process of frequency locking, only uniform pseu-
and periodically generated producing two trains of pulsesloreflected waves with a fixed wavelength propagate to the
symmetrically propagating outwards from the location of anright throughout the whole; region. Simultaneously in the
initiating pulse with ever increasing wavelendt#,15. We ¢, region, waves propagate to the left with spreading wave-
use the value= —0.16 throughout this work which puts the length. As a result, after a long transient period gallegion
system in a LC regime. The parametarsd, D are the same points collectively operate as an extended unidirectional
for both regions of space. Note that all parameters and vardriver (see below, oscillating with just about their natural
ables are dimensionless. frequency, and a minimal phase lag which decreases mono-

The numerical integration of the systefh) was carried tonically from the interface towards the left outer edge.
out using the unconditionally stable Crank-Nicolson method. The value ofe; is kept constant at 0.005 in all simulations
The values of time and space intervals, used for all numericalf the two region model, and the period of the pseu-
experiments, werddt=1 and Ax=1. Control runs carried doreflected waves propagating in the region is presented
out with smaller grid values invariably showed the same rein Fig. 2(a) as a function ofAs, whereAe=g,—¢,. For
sults. comparison, the period and amplitude of a separate single

An initiating pulsery(x), usually a narrow space Gauss- oscillator versuse are shown in Figs. ®) and Zc). The
ian centered at some=x;(>X,) in the low frequency re- observed complex and nonmonotonic behavior in Fig) 2
gion, is launched at=0. As long as the wave train has not can be explained as entrainment by the external driver. The
reached the regions’ interface, a wavelength spreading is olgriver’s action becomes clear from Fig. 3, where the fre-
served due to local diffusion currents which tend to minimizequency of the PRW divided by the frequency of the oscilla-
the phase differences between adjacent oscillating points. Ations in thee, region is displayed as a function afs. The
ter reaching the interface, poirg in the dual medium, it is obtained picture resembles a portion of a Devil's staircase
seen that the left-going waves, which propagated fronzthe where comparatively long intervals of strong resonances 1:1,
region, gradually disappear and are replaced by higher fret:2, and 1:3 appear, and are separated by a set of weak reso-
guency right-going waves “reflected” from the interface; seenances, partially obeying a Farey tree rule. Note that the
Fig. 1. The actual wave generation process at the interface &bsence of higher strong resonances is quite reasonable,
as follows: the immediate left vicinity of the interfacg  since a frequency-locking mechanism allows only the propa-
begins oscillating at the higher frequency, thus reaching thgation of waves whose period is smaller than the natural
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FIG. 3. The ratioT ., /T,1(prwy between the period of the oscil- Aeg
lations in thee, region and the final period of the PRW, as a func-
tion of Ae. Entrainments for different rational values of the abscissa
are visible showing relatively long horizontal segments correspond- 1.2 1 b
ing to strong resonancés:1, 1:2, and 1:B Also present are several
intermediate weak resonancet<3,D=1). 1 ¢
period of thee; region (220 dimensionless units in this 08 4 A, =05 -1
case. On the other hand, the minimal period of an external ’ Ax™
driver (region e,) is 58 dimensionless units, see FigcR g
implying that the highest integer which, multiplied by 58, g 061
yields a value smaller than 220 is 3. Correspondingly, 1:3 is i
the maximal strong resonance that can be generated here. 0.4 -
It is well known that a similar entrainment driving is gen-
erally observed in the dynamics of forced nonlinear single 02 4
oscillators(see, e.g.[16—18). To relate such a behavior to ’
our spatially extended case, we “removed” the spatial de-
pendence by considering a system of two unidirected 0= T T T 1
coupled oscillators whose parameters are the same as those 210 170 130 90 50
of the two uniform regions discussed above. The system of , T,
equations is
FIG. 4. Entrainmenta in the model of two unidirectionally
vy coupled oscillators, anb) in the model of a single oscillator with
W= K(vy=vy) +vy(vi—a)(l—vy) —wy, external periodic driving(a) T,/T, represents the ratio between
periods of the driving and driven oscillatorAg=¢e,—¢,, andK
=0.068; (b) T,/T represents the ratio between the periods of the
IWy - external pulses and the driven single oscillator as a functidn, pf
ot e1(vi—dwy), The symbols represent the driving amplitud@for A,,=1 andO
for Ae,=0.5 (d=3,D=1).
(91/2
W:VZ(VZ_a)(l_VZ)_WZI v -
—=p(r—a)(l-v)—W+Asy D, S(t—mT,,),
at m=0
W
7=82(V2_dW2)- 3] IW
E=s(u—dw), (3)

Unidirectionality here means that oscillator 2 influences os-

cillator 1 through the coupling terd(v,—v,), but not the  where Aq, is the external driver's amplitude andlis the
other way round. The ratio of the final frequencies of the twoDirac delta function. The period of the oscillatbrdepends
oscillators versus\e is shown in Fig. 4a). The similarity = monotonically on the period of the external pulsggs,,

with Fig. 3 is quite evident. while the dependence of, is stepwise, Fig. &). These
An even simpler model was also considered including aesults allow us to qualitatively explain the nonmonotonic
single periodically driven oscillator, dependence of the PRW period verdiss presented in Fig.
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FIG. 5. The phase portrais) and the time evolutiom(t) (b) of
the driven oscillator in the model of two unidirectionally coupled
oscillators[Egs. (2)]. The parameter& =0.068 andAs=¢c,—¢; >
=0.0215 correspond to the 1:3 resonance. Other parameters are t 0 V {/ l/ \/
same as in the low-frequency region of the model of Edjs. o 05
-0.02 e 3000 t 3700
2(a). Indeed, an increase dfe results in both, a monotonic 050y 1.0

decrease of the driving amplitude, and a nonmonotonic de-
crease of its period, cf. Figs(l® and Zc). Since these two
factors have an opposite and nonproportional influence o
the PRW period, the nonmonotonic dependencelerbe-
comes reasonable.

FIG. 6. Phase portraits and time evolutiong) of the oscilla-
jons at three different points in the transient zone of the low-
requency e, region (Ae=g,—&,=0.0215). (a) Complex,
period-3 oscillations at the poing,+1 (the border of thes; re-
gion); (b) oscillations of lower complexity at an intermediate point
Xo+4; (c) “simplest,” period-1 oscillations at the point,+ 10
IIl. DIFFUSION INDUCED BIFURCATIONS (d=3,D=1).

IN A TRANSIENT ZONE . .
above which the entrainment changes fréin3) to (1:2).

We note in the model of Eq2) that for a comparatively This entrainment transition simplifies the oscillations profile
large Ae (Ae=0.01, beyond the 1:1 resonandbe driven at the pointxy+1, as well as in the entire transient zone,
oscillator exhibits complex periodic oscillations, including awhose size decreases correspondingly. With a further in-
few different local maxima, Fig. 5. With the same parametercrease oD, the periodicity of the zone’s oscillations is pre-
values, similar oscillations are observed at the pajpt 4, ~ Served, but its size starts to increase again until a second
near the border of the low frequency region of the full diffusion-induced bifurcation occurs. Examples Dfvalues
model, Fig. 6b). However, the action of diffusion here re- corresponding to different oscillations at the potgt- 1 are

sults in the interesting phenomenon of a gradual usimp”ﬁ_shown in Fig. 7. Note that oscillations of complex periodicity

cation” of these wave forms, i.e., a transition to less intricateSUrPrisingly appear between the period 2 and the period 1,

wave profiles. Thus, in the low-frequency region there apt9- 7(C)- Here complex motion in the vicinity of the un-

pears a narrow transient zofiabout ten grid points from stable f_ixed po_in'v=w=0 is observed, namely the influe_n_ce
xo+1, Fig. 6a), to xo+ 10, Fig. c)] where this effect is of the fixed point leads to the appearance of three additional
observed. Beyond this zone, all region points display simpldhase loops of which one is small, while the other two are
periodic oscillations with equal frequency and constant phasi'9e- A further increase d results in a displacement of the
lags. phase trajectories away from the fixed point, and a corre-
Different oscillations of neighboring points are obviously SPonding oscillation “simplification,” Fig. @). _
possible only when the diffusion coupling is comparatively _Additional numerical experiments were conducted in
weak. Our simulations demonstrate that an increase of th&@hich localized external triggering pulses were applied to
diffusion coefficientD causes a proportional decrease of thelniform LC media. No transient zone was observed in these
difference between the complex oscillations at poigt 1 instances, indicating that such transience is a phenomenon
and its close neighborhood. This is reasonable since an if€culiar to the spatially extended driver.
creased coupling between the medium points leads to a mor
effective “driving” from the pointxy,+1 and, as a result, to
an increase of the transient zone’s size. However, a diffusion- The collective dynamics of oscillating points belonging to
induced bifurcation at the poinky+1 occurs forD=5, thee, high frequency region is presented in Fig. 8. “Refrac-

R/. DYNAMICS OF THE 1D HIGH FREQUENCY REGION
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der of thee, region. (&) Period-3 oscillations folD=4; (b)

period-2 oscillations forD=5; (c) period-4 oscillations forD '0'50 X 400
=150. A complex motion is observed around the unstable fixed
point (origin of the phase planevhose influence leads to the ap-  FIG. 8. Dynamics in the high-frequency region: Presented are

pearance of three additional closed loofth; period-1 oscillations  refractive waves whose wavelength gradually increases with time.
at D=500. The additional closed loops vanish because the motiolrrows indicate the local “source” of these waves which moves
takes place further away from the origin. Results are presented fasway from the interface. After a long tinitrame (d)] only one half
thee,, €, regions whose sizes equal 130 and 70 grids points corof a refractive wave is observed€3,D=1).

respondingly ¢=3).

. . . transition is observed from compleperiod 3 to simple
tive” waves with a monotonous wavelength spreading a€period 1 types of oscillations

present in this region. A similar phenomenon was also ob- Note that in order to synchronize the motion of points

served previously in uniform LC medipl4,19, and ex- i different limit cycles, relatively large diffusion currents

plained by “phase locking” of coupled identical oscillators ;o voqyired. Therefore a relatively large spatial gradient of

which tend to oscillate in unison i.e., with the same fre-. : : : . .
’ ..~ is observed mainly in the transient zojsee Fig. . This
guency, and zero phase lag. Here, however, an addition y o 9. 8]

) ; ¢ the local " of 1h fracti ct might also provide an understanding of the motion of the
transient motion of the local “source” of the refractive rqfr4ctive waves source in Figs(&B—8(d). Indeed, the maxi-

waves Is observed. Th|s_ source, _def|r_1ed as_the point frorﬂwal spatial gradient ofr observed initially in the transient
which waves propagate in both directions, displays a slow,,q "rig @a) gradually decreases via a diffusion current,
motion across the whole, region from the interface to the Figs. 8b) and &c). This leads to a “smoothing” of the trail-
left edge. As a result of the Neumann boundary cond|t|0n§ng front of the corresponding refractive wave, and thus to

only one-half of the refractive wave eventually subsists, Fig{ha motion of the peaki.e., the local sourdeaway from the
8(d), i.e., the points on the two opposite ends of the region tarface. o

oscillate with a maximal phase lag of 180°. This behavior of

the high-frequency region is obtained for a wide rang& of

values and for_ different region sizes. The entire region thus V. THE EXTENDED DRIVER
acts as a spatially extended driver.

A narrow transient zone of about ten grid points also ap- It is also found that an increase in size of the higher-
pears in thes, region, to the left of the interface. The points frequency region increases its influence on the driven region.
of this zone have different oscillating amplitudes than theSuch a dependence of the reflected wave period is monotonic
rest of the region. In the case of a comparatively small  for a comparatively smalhe, as shown in Fig. 9. In the case
(i.e., for the 1:1 resonangall points of thes, transient zone of a small size of regior,, the ensuing frequency is similar
oscillate with the same frequency but with a gradual increas& the natural frequency of the, region. Increasing this size
in the amplitude of oscillations away from the regions’ inter- results in a stronger influence, whereby the period is lowered
face. IncreasingAe brings about more intricate patterns until the corresponding value of the PRW period, shown in
where points belonging to the transient zone display oscillaFig. 2, is achieved asymptotically. The PRW dynamics is
tions of different periodicity and complexity. For example, therefore determined not only by local oscillations at the
for Ae =0.026 corresponding to the 1:3 resonance, a graduahterface, but by the size of the entire high frequency region

016211-5



GUTMAN, AVIRAM, AND RABINOVITCH PHYSICAL REVIEW E 69, 016211 (2004

230 - Equationg4) were solved on a comparatively large rectangle
(150%x 150 or 150< 250 grid point$ with Neumann bound-
ary conditions. The medium was divided into two uniform
regions, withe=¢; ande=¢€,, €,>¢q, respectively, by a
straight borderline inclined at an angteto the x axis (0
< 0</2). A plane wave was initiated at the left edge of the
low-frequency region £;), moving in the positivex direc-
tion. Figure 10 shows that the plane wave is reflected at
some angle with respect to the border. The angle of reflec-
tion, however, is not equal to the angle of incidence. This
inequality is similar to nonlinear reflectidmccompanied by
second-harmonic generatjonf high-powered laser beams
[19]. For a larger angle of incidence resulting from a smaller
0, the difference between the angle of incidence and the
FIG. 9. Final periodr of synchronized oscillations in thentire (smalley angle of reflectllon.|ncreaséE|gs. 1Qa) and 11a)].
medium as a function of the sizex of the high-frequency region, EVen for an angle of incidence of 90%0), reflected
Ae=0.002 d=3,D=1). waves are obtained as shown in Fig.(d0 The observed
difference between the angles of incidence and reflection is
as well. Our hypothesis of a spatially extended driver thud't really surprising, since reflection without change of fre-
gains ample support. quency(as in linear opticsis a necessary condition for the
equality of angles, while here the frequency of the reflected
wave is different than that of the incident wave.
VI. A TWO-DIMENSIONAL MODEL WITH TWO SPATIAL In the e; region, uniform reflected waves of constant
REGIONS wavelength propagate with a fixed angle with respect to the
In this section the phenomenon of pseudoreflection Oporder', Wgereasc;nljhez reglorr: a vt\)/avelength sp(;eadmg
waves from a border between regions of different frequency'(ff ?ﬁg'r:s%usrggeof' re?:g%\% :/vgvaesoxg\-/vmreens:toltns einr?ﬁg/eament
is briefly investigated in two dimensions. To this end the B ,, P-
following two-dimensional FHN model is considered: pearance.of target' waves. The source of thesg waves
gradually increases in size, and slowly propagates irethe
region away from the separating line. Following a transient
period, the source settles on the “opposite edge, e.g.,
Fig. 10@), for t=48000], similarly to our 1D simulations.
The different wave behavior in the two regions results in
“front breaking” in the vicinity of the line of separation, thus
satisfying the necessary condition for generation of spirals
[20]. Indeed, growing spirals are generated in the higher fre-

210 4

190 -

170

v v v
+v(v—a)(l—v)—w,

pa— +
a Plaet a2

IW
E=s(v—dw). (4)

FIG. 10. A two-dimensional
gray scale representation ofalti-
tude lines in the range-0.5<v
<1 [Eq. (4)]. Abscissa and ordi-
nate values denote indices of grid
points. Pseudoreflection of a plane
wave, launched in the low-
frequency region, is observed on
the left boundary. The interface
here is a straight line inclined at
an angled with respect to thex
axis. (a) #=63°;(b) 6=0°. The
angle of reflection in both cases is
not equal to the angle of inci-
dence. The 2D simulations were
performed with £,=0.03, &,
=0.05, andd=1, which are dif-
ferent from those used in our 1D
simulations. Arrows indicate di-
rection of propagation of the
pseudo reflected and refractive
waves.

t = 48000
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FIG. 11. The dynamics of refractive waves propagated in the 2D high frequency reg@mrJpper row, §=37°; (b) lower row, 6
=0°. Creation of target and spiral waves is observed. The spirals generation strongly depends on the interface atiéittatimmmber of
spirals drastically increases with a decreas#.dBray scale representation @faltitude lines in the range-0.5<v <1 [Eq. (4)]. Abscissa
and ordinate values denote indices of grid points.

50

qguency €,) region, as shown in Fig. 11. Their appearance isological measurements very difficult. Nevertheless, sinus
possible only if the angle? is smaller than some critical echo(ectopic beats inside of the sinus nadehich repre-
value. A further decrease @fleads to an early appearance of sents an essential part of a reentry circuit was experimentally
a growing number of spiral waves. Thus=0 is the best observed25] and can probably be explained as some sort of
situation for spiral generation. Evidently, when the separatpseudoreflection from an inhomogeneitgthin the SN. A
ing line is parallel to thex axis many spirals are observed, good quantitative comparison, however, would require more
Fig. 11(b). precise measurements, as well as more complicated SN mod-
els[26].

Figure 9 displays the dependence of the final period of the
model SN upon the size of its high frequency region, namely

In this section we wish to emphasize the possibility thatits monotonic decrease with size and an ultimate saturation.
the results presented in this work may well be of importancelherefore, for a SN composed of two regions with different
for biological applications. In particular, their relevance to frequencies, the high frequency region size should be larger
the dynamics of the cardiac sinus not&\) is discussed. than some critical value in order to be able to drive the entire
Our simplified model of a SN consists of two embedded LCSN at this frequency. This is in addition to our earlier result
regions, the inner region being of higher frequency than th¢9] for a single region SN where the dependence of its final
outer one, thus preventing the creation of “inward” pseu-frequency upon it$ull size was shown to be strongly non-
doreflection[10]. We suggest that this model may contain monotonic. The exact SN structure remains an open problem
important features of the dynamical behavior of a sinus nodeo this day. Along with the model examined in this work,

It is commonly believed that, despite their nonuniformity, including a simple piecewiseonstantnonuniformity, the so-
all SN cells oscillaten unison i.e., with the same frequency called “gradient model” in which more complex, piecewise
and zero phase Id@1]. To our knowledge, the existence of linear nonuniformities is also quite popul27]. We have
propagating waves inside the sinus node has very rarely beeherefore performed some FHN numerical simulations with
discussed previouslisee, e.g.[22]). From our simulations, piecewise linear nonuniformities and found a similar effect
on the other hand, we expect to get out-of-phase motions iof pseudoreflection as described above.
the higher-frequency regiofSec. I\V) and PRW in its low- Another interesting result is the diffusion-induced bifur-
frequency region(Sec. ). cations in the transient zones near the interface. Besides the

The PRW phenomenon itself is interesting in the contexbbvious theoretical interest which this phenomenon arouses,
of a heart disease called the sinus node reefB}]. Al- it could allow a better understanding of the influence of the
though as early as 1943 this disturbance was conceived ascaupling between SN cells upon the development of cardiac
potential source of atrial tachycardia4], the exact descrip- arrhythmias. In particular, it was shown that some of cardiac
tion of its dynamics is still problematic. The main problem is arrhythmias may arise as a result of a poor intercellular cou-
that the SN is a rather small organ, thus making electrophysipling in the sinus nod¢28]. Here we demonstrated the op-

VIl. POSSIBLE APPLICATIONS
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posite effect, namely, that enhanced coupling can also lead to Spiral-waves generation in our 2D simulations is usually
cardiac arrhythmias. Indeed, our simulatig8ec. Ill) imply  associated with serious arrhythmias in the hE28t30. Sec-

that an increase in the diffusion coefficiebt (i.e., in the tion VI of this work presents a specific mechanism for such
coupling between oscillating pointieads to a size increase spiral generation, namely the superposition of 2D uniform
of the transient zone of the low-frequency region which canSN regions at certain orientation to each other. The geometry
extend even as far as the SN boundary. Thus complex perof the different parts of the SN therefore plays a critical role.
odic oscillationg similar to those presented in Figgaband  Our results show, e.g., that the optimal orientation of the
6(b)] could appear at the SN output, a phenomenon whiclinterface in order to avoid spiral waves is for it to be perpen-
can destroy normal cardiac functioning. dicular to the propagating waves direction.
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